Detection of the Hormone Receptors Controlling the Female Genital Tract throughout the Sexual Cycle of an Oviparous Caecilian Amphibian, Boulengerula taitana

C. Brun

Sciences and Humanities Confluence Research Center, UCLy, cedex 02, 69288 Lyon, France.

J. Measey

Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.

J. M. Exbrayat *

Sciences and Humanities Confluence Research Center, UCLy, cedex 02, 69288 Lyon, France and Ecole Pratique des Hautes Etudes, PSL, Paris, France.

M. Raquet

Sciences and Humanities Confluence Research Center, UCLy, cedex 02, 69288 Lyon, France.

*Author to whom correspondence should be addressed.


Abstract

Aims: Hormonal control of the development of the oviducts, as inferred by the distribution of hormone receptors, is described for the first time in the oviparous caecilian, Boulengerula taitana (Gymnophiona: Herpelidae). A comparison is made with the aquatic viviparous caecilian, Typhlonectes compressicauda.

Study Design: The study was performed from histological sections of the left oviduct of three B. taitana females collected at different periods of the sexual cycle in the Taita Hills, Kenia, from April 2003 to March 2004. The hormone receptors were localized with indirect immunohistochemical method. Sixty counts were carried out per antibody and per season in the various parts of the oviduct. Analysis of variance (one-way ANOVA) and Fisher test (LSD) permitted to determine the significant differences between the groups (p≤ 0.05).

Place and Duration of Study: Sciences and Humanities Confluence research Center, UCLy, cedex 02, 69288 Lyon, France

Methodology: By using an immunohistochemical staining method, the specific receptors of steroid hormones (α- and β estrogen, progesterone) and pituitary hormones (gonadotropin, prolactin) were detected in the tissues of the ostium and the oviduct during the female sexual cycle.

Results: The number of immunostained cells reflects the sensitivity of each part of the genital tract to hormonal control, related to its physiological functions. The large number of progesterone receptors detected in tissues during the preovulation period implies the key role of progesterone in preparing the oviduct for ovulation. The two estrogen receptors are differently detected in the tissues, suggesting a specific physiological function of each isoform. The presence of pituitary hormone receptors in the cells during the reproductive period suggests direct control of these hormones on the development and functions of the genital tract. Similarities are observed in the neuroendocrine control of this oviparous species and the viviparous caecilian Typhlonectes compressicauda.

Conclusion: This study indicates the presence of steroid and pituitary hormone receptors in the genital tract of B. taitana, with variations closely related to the key events of seasonal reproductive activity, and confirm that oviduct morphology is closely correlated with ovarian function. A comparative study of the detection of these hormone receptors also revealed correspondence between the parts of the oviduct in the oviparous and the viviparous species T. compressicauda. Despite differences in reproductive mode, similarity in receptor distribution between the two species suggests conservative physiological control of the reproductive cycle in caecilians.

Keywords: Caecilian, oviduct, sexual steroid receptors, gonadotropin receptors, prolactin receptors


How to Cite

Brun, C., Measey, J., Exbrayat, J. M., & Raquet, M. (2023). Detection of the Hormone Receptors Controlling the Female Genital Tract throughout the Sexual Cycle of an Oviparous Caecilian Amphibian, Boulengerula taitana. Asian Journal of Research in Animal and Veterinary Sciences, 6(4), 425–440. https://doi.org/10.9734/ajravs/2023/v6i4271

Downloads

Download data is not yet available.

References

Norris DO. Hormones and reproductive patterns in urodele and gymnophionid amphibians. In: Norris DO, Lopez KH, editors. Hormones and Reproduction of Vertebrates, Amphibians. San Diego, USA: Academic Press, Elsevier; 2011;2.

Dawson A. Comparative reproductive physiology of non-mammalian species. Pure and Appl Chem. 1998;70:1657–1669.

Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000; 80:1523–1631.

Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998;19:225–268.

Yamamoto T, Nakayama Y, Tajima T, Abe SI, Kawahara A. Cloning of a cDNA for Xenopus prolactin receptor and its metamorphic expression profile. Dev Growth Differ. 2000;42:167–174.

Kohno S, Katsu Y, Iguchi T, Guillette Jr LJ. Novel approaches for the study of vertebrate steroid hormone receptors. Integr Comp Biol. 2008;48:527–534.

Exbrayat JM, Brun C, de Montera B, Moudilou EN, Raquet M. Amphibians as models for the study of cell proliferation. Differentiation and apoptosis throughout embryonic development and oviduct cycles. J. Mol Histol Med Physiol. 2019;4,1.

Guerriero G, Roselli CE, Paolucci M, Botte V, Ciarcia G. Estrogen receptors and aromatase activity in the hypothalamus of the female frog, Rana esculenta. Fluctuations throughout the reproductive cycle. Brain Res. 2000;880:92–101.

Guerriero G, Roselli CE, Ciarcia G. The amphibian (Rana esculenta) brain progesterone receptor: relationship to plasma steroids and vitellogenic cycle during the gonadal recovery phase. Ann N Y Acad Sci. 2009;1163:407-409.

Gower DJ, Giri V, Dharne MS, Shouche YS. Frequency of independent origins of viviparity among caecilians (Gymnophiona): evidence from the first ‘live‐bearing’ Asian amphibian. J Evol Biol. 2008;21(5):1220–1226.

Gomes AD, Moreira RG, Navas CA, Antoniazzi MM, Jared C. Review of the reproductive biology of caecilian (Amphibia, Gymnophiona). South Am J Herpetol. 2012;7:191–202. Wake MH. Evolution of oviductal gestation in amphibians. J Exp Zool. 1993;266:394–413.

Kupfer A, Kramer A, Himstedt W, Greven H. Copulation and egg retention in an oviparous Caecilian (Amphibia: Gymnophiona). Zool Anz. 2006;244:223–228.

Foucart T, Lourdais O, De Nardo D, Heulin B. Influence of reproductive mode on metabolic costs of reproduction: insight from the bimodal lizard Zootoca vivipara. J Exp Biol. 2014;217:4049–4056.

Lodé T. Oviparity or viviparity? That is the question. Reprod Biol. 2012;12:259–264.

Wake MH. Evolutionary morphology of the caecilian urogenital system. I. The gonads and the fat bodies. J Morphol. 1968; 126:291–331.

Measey GJ, Gower DJ. Externally measured condition versus internal organ mass in the caecilian Gegeneophis ramaswamii (Amphibia: Gymnophiona: Caeciliidae). Zool Sci. 2005;22:445-452.

Mazzi V, Vellano C. Prolactin and reproduction. In Hormones and Reproduction. In: Noris DO, Jones RE, editors. Fishes, Amphibians and Reptiles. New York; Plenum Press; 1987.

Wake MH. A brief history of research on gymnophionan reproductive biology and development. In: Exbrayat JM, editor. Reproductive Biology and Phylogeny of Gymnophiona (Caecilians). Enfield, NH, USA: Science Publishers; 2006.

Measey GJ, Smita M, Beyo RS, Oommen OV. Year-round spermatogenic activity in an oviparous subterranean caecilian, Boulengerula taitanus Loveridge 1935 (Amphibia Gymnophiona Caeciliidae). Trop Zool. 2008;21:109–122.

Exbrayat JM. Endocrinology of reproduction in Gymnophiona. In: Exbrayat JM, editor. Reproductive Biology and Phylogeny of Gymnophiona (Caecilians). Enfield, NH, USA: Science Publishers; 2006.

Raquet M, Measey GJ, Exbrayat JM. Annual variation of ovarian structures of Boulengerula taitana (Loveridge 1935), a Kenyan caecilian. Afr J Herpetol. 2015;64:116–134.

Raquet M, Brun C, Exbrayat JM. Patterns of apoptosis and proliferation throughout the biennial reproductive cycle of viviparous female Typhlonectes compressicauda (Amphibia, Gymnophiona). Int J Mol Sci. 2017;18,16.

Brun C, Raquet M, Measey J, Exbrayat JM. Cyclic variation of the oviduct structure of Boulengerula taitana, an oviparous species of Gymnophiona: morphological changes, proliferation and apoptosis. Afr J Herpetol. 2017;66:93–105.

Kupfer A, Müller H, Antoniazzi MM, Jared C, Greven H, Nussbaum RA, et al. Parental investment by skin feeding in a caecilian amphibian. Nature. 2006;7086: 926–929.

Kupfer A, Wilkinson M, Gower DJ, Müller H, Jehle R. Care and parentage in a skin-feeding Caecilian Amphibian. J Exp Zool. 2008;309A, 460–467.

Gomes AD, Navas CA, Jared C, Antoniazzi MM, Ceballos NR, Moreira RG. Metabolic and endocrine changes during the reproductive cycle of dermatophagic caecilians in captivity. Zoology. 2013;116:277–285.

Wilkinson M, Kupfer A, Marques-Porto R, Jeffkins H, Antoniazzi MM, Jared C. One hundred million years of skin feeding? Extended parental care in a Neotropical caecilian (Amphibia: Gymnophiona). Biol Lett. 2008;4:358–361.

Wilkinson M, Sherratt E, Starace F, Gower DJ. A new species of skin-feeding caecilian and the first report of reproductive mode in Microcaecilia (Amphibia: Gymnophiona: Siphonopidae). PLoS One. 2013;8:e57756.

Rastogi R, Iela L, Di Meglio M, Di Fiore MM, Pinelli C, Fiorentino M. Hormonal regulation of reproductive cycles in amphibians. Amph Biology. 2005;6:2045–2177.

Aranzábal MCU. Hormones and the female reproductive system of amphibians. In: Norris DO, Lopez KH, editors. Hormones and Reproduction of Vertebrates, 1st ed. Cambridge, MA, USA: Academic Press, Elsevier; 2011;2

Saito A, Kano Y, Suzuki M, Tomura H, Takeda J, Tanaka S. Sequence analysis and expressional regulation of messenger RNAs encoding β subunits of follicle-stimulating hormone and luteinizing hormone in the red-bellied newt Cynops pyrrhogaster. Biol Reprod. 2002;66:1299–1309.

Ulbrich SE, Kettler A, Einspanier R. Expression and localization of estrogen receptor α, estrogen receptor β and progesterone receptor in the bovine oviduct in vivo and in vitro. J Steroid Biochem Mol Biol. 2003;84:279–289.

Inceli MS, Kaptan E, Sancar S, Murathanoglu O, Castillo SS. Localization of prolactin receptor in the dorsal and ventral skin of the frog (Rana ridibunda). Biologia. 2010;65:157–163.

Sever DM, Staub N.L. Hormones, sex accessory structures, and secondary sexual characteristics in amphibians. In: Norris DO, Lopez KH, editors. Hormones and reproduction of vertebrates, vol.2. 1st ed. Cambridge, MA, USA: Academic Press, Elsevier; 2011.

Exbrayat JM. Croissance et cycle des voies génitales femelles de Typhlonectes compressicaudus (Duméril et Bibron, 1841), Amphibien Apode vivipare. Amphibia-Reptilia. 1988;9:117–134. French.

Hraoui-Bloquet S. Nutrition embryonnaire et relations materno-foetales chez Typhlonectes compressicaudus (Duméril et Bibron,1841). Amphibien Gymnophione vivipare. PhD Thesis, EPHE, Lyon, France; 1995. French.

Exbrayat JM. Quelques Aspects de la biologie de la reproduction chez Typhlonectes compressicaudus (Duméril et Bibron, 1841), Amphibien Apode. Doctor ès. Sciences Thesis, Pierre and Marie Curie University, Paris, France; 1986. French.

Exbrayat JM, Collenot G. Quelques aspects de l’évolution de l’ovaire de Typhlonectes compressicaudus (Duméril et Bibron, 1841), Batracien Apode vivipare. Etude quantitative et histochimique des corps jaunes. Reprod Nutr Dévelop. 1983;23:889– 898. French.

Exbrayat JM. Reproduction et organes endocrines chez les femelles d’un amphibian gymnophione vivipare Typhlonectes compressicaudus. Bull Soc Herp Fr. 1992;64:37–50. French.

Wake MH, Dickie R. Oviduct structure and function and reproductive modes in amphibians. J Exp Zool. 1998;282:477–506.

Exbrayat JM, Morel G. The cytological modifications of the distal lobe of the hypophysis in Typhlonectes compressicaudus (Duméril and Bibron, 1841), amphibia gymnophiona, during the cycles of seasonal activity. II: In adult females. Biol Struct Morphog. 1990–1991;3:129–138.

Exbrayat JM, Morel G. Prolactin (PRL)-coding mRNA in Typhlonectes compressicaudus, a viviparous gymnophionan amphibian: An in situ hybridization study. Cell Tissue Res. 1995;280:133–138.

Malonza PK, Measey GJ. Life history of an African caecilian: Boulengerula taitana Loveridge 1935 (Amphibia Gymnophiona Caeciilidae). Trop Zool. 2005;18:49–66.

Raquet M, Measey GJ, Exbrayat JM. Premières observations histologiques de l'oviducte de Boulengerula taitana, Loveridge 1935, Amphibien Gymnophione. Rev Fr Histotechnol. 2011;24:29–38. French.

Raquet M, Measey GJ, Exbrayat JM. Mise en évidence des récepteurs des oestrogènes α et β dans les ovaires de Boulengerula taitana amphibien gymnophione. Rev Fr Histotechnol. 2013;26:99–105. French.

Brun C, Exbrayat JM, Raquet M. Localization of receptors for sex steroids and pituitary hormones in the female genital duct throughout the reproductive cycle of a viviparous Gymnophiona Amphibian, Typhlonectes compressicauda. Animals. 2021;11,12.

Lin F, Pritchard JW, Liu H, Wilkerson ML. Handbook of practical immunohistochemistry: Frequently Asked Questions. 3rd ed. New York: Springer Nature; 2022.

Medina MF, Crespo CA, Ramos I, Cisint SB, Fernández SN. Effect of steroid hormones on Bufo arenarum oviduct. Utrastructural study. J Exp Zool. 2007; 307A:312–323.

Norris DO. The hypothalamus-pituitary system in nonmammalian vertebrates. In: Norris DO, Carr JA, editors. Vertebrate Endocrinology. San Diego, USA: Academic Press, Elsevier; 2007.

Schuetz AW. Induction of oocytic maturation and differentiation: mode of progesterone action. Ann N Y Acad Sci. 1977;286:408–420.

Schuetz AW, Lessman C. Evidence for follicle wall involvement in ovulation and progesterone production by frog (Rana pipiens) follicles in vitro. Differentiation. 1982;22:79–84.

Masood-Parveez U, Nadkarni VB. Morphological, histological, histochemical and annual cycle of the oviduct in Ichthyophis beddomei (Amphibia: Gymnophiona). J Herp. 1991;25:234–237.

Medina MF, Ramos I, Crespo CA, González-Calvar S, Fernández SN. Changes in serum sex steroid levels throughout the reproductive cycle of Bufo arenarum females. Gen Comp Endocrinol. 2004;136:143–151.

Redshaw MR. The hormonal control of the amphibian ovary. Am Zool. 1972;12:289–306.

Lodge PD, Smith CL. Hormonal control of secretion in the oviduct of the Amphibia. Nature. 1960;185:774–775.

Hewitt SC, Winuthayanon W, Korach KS. What’s new in estrogen receptor action in the female reproductive tract. J Mol Endocrinol. 2016;56:R55–R71.

Li S, O’Neill SRS, Zhang Y, Holtzman MJ, Takemaru K, Korach KS, et al. Estrogen receptor α is required for oviductal transport of embryos. FASEB J. 2017;31:1595–1607.

Exbrayat JM, Morel G. The cytological modifications of the distal lobe of the hypophysis in Typhlonectes compressicaudus (Dumeril and Bibron, 1841), amphibia gymnophiona, during the cycles of seasonal activity. II: In adult females. Biol Struct Morphog. 1990;3:129–138.

Bhatta GK. Some aspects of reproduction in the apodan amphibian Ichthyophis. PhD. Dissertation, Karnatak University, Dharwad, India; 1986.

Polzonetti-Magni A, Carnevali O, Yamamoto K, Kikuyama S. Growth hormone and prolactin in amphibian reproduction. Zool Sci. 1995;12:683–694.

Iwata T, Toyoda F, Yamamoto K, Kikuyama S. Hormonal control of urodele reproductive behavior. Comp Biochem Physiol. B. Biochem. Mol. Biol. 2000;126:221–229.

Exbrayat JM, Morel G. Visualization of gene expression of prolactin-receptor (PRL-R) by in situ hybridization in reproductive organs of Typhlonectes compressicauda, a gymnophionan amphibian. Cell Tissue Res. 2003;312: 361–367.